#NOSQL基础
今天开始,我会将我NOSQL数据库学习的学习笔记和学习感悟写成一篇篇的文章。我会尽量的把它做的详细。来吧,一起奔向非关系型数据存储的海洋!
NoSql,全称是 Not Only Sql,指的是非关系型的数据库。下一代数据库主要解决几个要点:非关系型的、分布式的、开源的、水平可扩展的.
MongoDB 是一个基于分布式文件存储的数据库。由 C++ 语言编写。旨在为 WEB 应用提供可扩展的高性能数据存储解决方案。 MongoDB 是一个介于关系数据库和非关系数据库之间的产品,是非关系数据库当中功能最丰富,最像关系数据库的。(期待一起学习)
ACID,是指在关系型传统数据库管理系统(DBMS)中事务所具有的四个特性:原子性(Atomicity)、一致性(Consistency)、隔离性(Isolation,又称独立性)、持久性(Durability)。
在非关系型数据库中,并不存在事务的acid,甚至,有些数据库是对事务弱支持的(像redis),但分布式数据库中(包括传统)中有CAP原则。CAP原则又称CAP定理,指的是在一个分布式系统中, Consistency(一致性)、 Availability(可用性)、Partition tolerance(分区容错性),三者不可得兼
C:Consistency(强一致性):分布式系统中的所有数据备份,在同一时刻是否同样的值。(等同于所有节点访问同一份最新的数据副本)
A:Availability(可用性):在集群中一部分节点故障后,集群整体是否还能响应客户端的读写请求。(简单理解就是那些数据保持可以比用户使用。
P:Partition tolerance(分区容错性):以实际效果而言,分区相当于对通信的时限要求。系统如果不能在时限内达成数据一致性,就意味着发生了分区的情况,必须就当前操作在C和A之间做出选择。
CAP理论就是说在分布式存储系统中,最多只能实现上面的两点。而由于当前的网络硬件肯定会出现延迟丢包等问题,所以分区容忍性是我们必须需要实现的。所以我们只能在一致性和可用性之间进行权衡,没有NoSQL系统能同时保证这三点。
CAP理论的核心是:一个分布式系统不可能同时很好的满足一致性,可用性和分区容错性这三个需求, 最多只能同时较好的满足两个。
因此,根据 CAP 原理将 NoSQL 数据库分成了满足 CA 原则、满足 CP 原则和满足 AP 原则三 大类:
当然,在有些博文中,他们多于分布式数据库中有自己的观点,这些观点也不无道理,如NOSQL都是实现A,而少满足C
CAP理论就是说在分布式存储系统中,最多只能实现上面的两点。
C:强一致性 A:高可用性 P:分布式容忍性
一致性和可用性之间取一个平衡。多余大多数web应用,其实并不需要强一致性。因此牺牲C换取P,这是目前分布式数据库产品的方向
对于web2.0网站来说,关系数据库的很多主要特性却往往无用武之地
数据库事务一致性需求 很多web实时系统并不要求严格的数据库事务,对读一致性的要求很低, 有些场合对写一致性要求并不高。允许实现最终一致性。
数据库的写实时性和读实时性需求 对关系数据库来说,插入一条数据之后立刻查询,是肯定可以读出来这条数据的,但是对于很多web应用来说,并不要求这么高的实时性,比方说发一条消息之 后,过几秒乃至十几秒之后,我的订阅者才看到这条动态是完全可以接受的。
对复杂的SQL查询,特别是多表关联查询的需求 任何大数据量的web系统,都非常忌讳多个大表的关联查询,以及复杂的数据分析类型的报表查询,特别是SNS类型的网站,从需求以及产品设计角 度,就避免了这种情况的产生。往往更多的只是单表的主键查询,以及单表的简单条件分页查询,SQL的功能被极大的弱化了。
BASE其实是下面三个术语的缩写:
它的思想是通过让系统放松对某一时刻数据一致性的要求来换取系统整体伸缩性和性能上改观。为什么这么说呢,缘由就在于大型系统往往由于地域分布和极高性能的要求,不可能采用分布式事务来完成这些指标,要想获得这些指标,我们必须采用另外一种方式来完成,这里BASE就是解决这个问题的办法