11 Jul 2017
Emotional chatting machine
Emotional Chatting Machine: Emotional Conversation Generation with Internal and External Memory
主要贡献
- 首次将情感因素引入了基于深度学习的生成式对话系统,提出了基于记忆网络的情感对话系统 Emotional Chatting Machine (ECM) ,在传统的 Sequence to Sequence 模型的基础上,ECM 使用了静态的情感向量嵌入表示,动态的情感状态记忆网络和情感词外部记忆的机制,使得 ECM 可以根据用户的输入以及指定情感分类输出相应情感的回复语句。
论文背景
网络结构原理
模型的总体框架如上图所示,用户问题输入为“What a lovely day!”,通过 Encoder 将其编码为隐向量表示 h,然后通过注意力机制,结合 decoder 的状态向量 s 在生成不同的词时,对问题的隐向量表示 h 的不同部分的信息选择性的加强,得到向量 c。指定情感类别为“Happiness”,经过索引得到情感类别嵌入向量,初始的情感状态记忆向量和相应的情感词表。decoder接受经过注意力机制的问题向量 c,情感类别嵌入向量和初始的情感状态记忆向量作为输入,通过循环神经网络生成下个词的生成概率 o,之后再经过情感词表对情感词和非情感词的加权,得到最终词的生成概率,通过采样即可得到输出“Haha, so happy today!”。
算法流程和讲解
实验过程和结果()
文章解读和评价